Improved Bioavailability and Antitumor Effect of Docetaxel by TPGS Modified Proniosomes: In Vitro and In Vivo Evaluations

نویسندگان

  • Helong Liu
  • Liangxing Tu
  • Yongxin Zhou
  • Zefang Dang
  • Luting Wang
  • Junfeng Du
  • Jianfang Feng
  • Kaili Hu
چکیده

A novel oral drug delivery system, TPGS modified docetaxel proniosomes (DTX-TPGS-PNs), was designed to enhance the oral bioavailability and antitumor efficiency of the poorly water-soluble drug docetaxel. DTX-TPGS-PN niosomes were 93 ± 6.5 nm in size, -18.53 ± 1.65 mV in zeta potential and exhibited spherical morphology, with an encapsulation efficiency of 97.31 ± 0.60%. The system showed sustained release in both simulated gastric and intestinal fluid. The results of caco-2 monolayer, everted gut sac model and improved single-pass intestinal perfusion model transport studies showed that DTX-TPGS-PN niosomes could significantly improve the absorption of DTX. The pharmacokinetics study suggested the absolute bioavailability of DTX-TPGS-PN niosomes were 7.3 times that of DTX solution. In addition, a higher antitumor efficacy than DTX solution was demonstrated in MCF-7 and MDA-MB-231 cells in vitro and in MCF-7 tumor-bearing mice model in vivo. Our results demonstrated DTX-TPGS-PN is promising in enhancing the bioavailability and efficiency of poorly water-soluble drug DTX, and the potential of proniosomes as stable precursors for oral drug delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect

In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...

متن کامل

Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-e...

متن کامل

Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy

Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retenti...

متن کامل

Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity

Poor bioavailability of Docetaxel (DCT) arising due to its low aqueous solubility and permeability limits its clinical utility. The aim of the present study was to develop DCT loaded self-emulsified drug delivery systems (D-SEDDS) and evaluate its potential ability to improve the oral bioavailability and therapeutic efficacy of DCT. D-SEDDS were characterized for their in vitro antitumor activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017